Abstract

Electrochemical quartz crystal microbalance (EQCM) has been used to study the electrochemical precipitation of Mn(OH)(2) on a Au crystal and its capacitance properties. From the EQCM data, it is inferred that NO3- ions get adsorbed on the Au crystal and then undergo reduction, resulting in an increase in pH near the electrode surface. Precipitation of Mn2+ occurs as Mn(OH)(2), with an increase in mass of the Au crystal. Mn(OH)(2) undergoes oxidation to MnO2, which exhibits electrochemical supercapacitor behavior on subjecting to electrochemical cycling in a Na2SO4 electrolyte. EQCM data indicate mass variations corresponding to surface insertion/extraction of Na+ ions during discharge/charge cycling. (C) 2010 The Electrochemical Society. DOI: 10.1149/1.3479665] All rights reserved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.