Abstract
The Epstein-Barr virus (EBV) latent infection membrane protein (LMP) is likely to be an important mediator of EBV-induced cell proliferation, since it is one of the few proteins encoded by the virus in latent infection and since production of this protein in Rat-1 cells results in their conversion to a fully transformed phenotype. LMP was previously noted to localize to patches at the cell periphery. In this paper we examine the basis of LMP patching in EBV-infected, transformed lymphocytes. Our data indicate that LMP is associated with the cytoskeletal protein vimentin. Although LMP is fully soluble in isotonic Triton X-100 buffer, only 50% of it is extracted from cells in this solution. The rest remains bound to the cytoskeleton. LMP undergoes phosphorylation, and phosphorylated LMP is preferentially associated with the cytoskeleton. As judged by both immunofluorescence and immunoelectron microscopy, the vimentin network in EBV-transformed lymphocytes or EBV-infected Burkitt tumor lymphocytes is abnormal. Vimentin and LMP often colocalize in a single patch near the plasma membrane. In response to Colcemid treatment of EBV-infected cells, vimentin reorganizes into perinuclear rings, as it does in uninfected cells. LMP is associated with these perinuclear rings. Vimentin (or a vimentin-associated protein) may be a transducer of an LMP transmembrane effect in lymphoproliferation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.