Abstract
Forecasting future moves of stock markets has been and always will be of great interest to researchers and practitioners. This paper proposes a multi-objective programming methodology to select the optimum technical indicators to be used as input in a Neural Network (NN) in order to predict stock market prices. A new mathematical model will be proposed which involves objective functions and constraints to filter out the noisy signals and maximize the prediction power. The 0-1 multi-objective model aims to select the indicators maximizing the covariance of the indicators with the output of the NN while minimizing the covariance among the indicators themselves. The Multi-objective model is transformed via the Epsilon Constraint technique. Many efficient configurations of indicators for different values of epsilon are evaluated and their resulting errors are presented. Our approach provides a systematic methodology in order to choose the variables that significantly affect price movements. The methodology is applied on the NIKKEI225 stock market index.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: HAL (Le Centre pour la Communication Scientifique Directe)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.