Abstract

The y-hydrogen hyperfine splitting constant (γ-H hfsc) for stable aminoxyl (nitroxide) spin labels such as 2,2,5,5-tetramethylpyrrolidine-1-oxyl and their derivatives is usually very small (<1.0 G) and not distinguished with EPR spectrometry. Surprisingly, large γ-H hfsc’s (≥2 .0 G) have been detected with EPR for the first time from ten 2-alkyl-2-phenyl-3,3,5,5- tetramethylpyrrolidine-1-oxyl stable aminoxyl radicals. It is discovered that γ-H hfsc’s are very sensitive to the size and the substitution pattern of 2-alkyl groups. When the 2-alkyl group is CH3 or CD3, γ-H hfsc’s are not resolved in the EPR spectra. But if the 2-alkyl group is C2H5, one γ-H hfsc is very large, equal to 4.72 G in C6H6. If the substituent is longer than C2H5, such as n-C3H7, n-C4H9, n-C5H11, n-C6H13 and CH2=CHCH2 - substituents, the γ-H hfsc is slightly smaller, equal to 4.59 G. For secondary substituents such as sec-C4H9 and cyclo-C6H11 , the γ-H hfsc decreases to 2.00 G. Intermediate γ-H hfsc’s correspond to C6H5CH2 (3.18 G) or a tertiary alkyl group such as t-C4H9 (3.47 G). Variation of γ-H hfsc’s is based on the change of the pyrrolidine ring conformation which is a result of the 2-alkyl group influence. The structures of these aminoxyl radicals are characterized also with mass spectrometry. Possible MS fragmentation mechanisms are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.