Abstract
We use epistemic game theory to explore rationales behind cooperative behaviors in the finitely repeated Prisoner’s Dilemma. For a class of type structures that are sufficiently rich, the set of outcomes that can arise when each player i is rational and satisfies (m_i-1)th order strong belief of rationality is the set of paths on which each player i defects in the last m_i rounds. We construct one sufficiently rich type structure to elaborate on how different patterns of cooperative behaviors arise under sufficiently weak epistemic conditions. In this type structure, the optimality of forgiving the opponent’s past defection and the belief that one’s defection will be forgiven account for the richness of the set of behavior outcomes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.