Abstract

A SIRS epidemic model with feedback mechanism on adaptive scale-free networks is presented. Using the mean field theory the spreading dynamics of the epidemic is studied in detail. The basic reproductive number and equilibriums are derived. Theoretical results indicate that the basic reproductive number is significantly dependent on the topology of the underlying networks. The existence of equilibriums is determined by the basic reproductive number. The global stability of disease-free equilibrium and the epidemic permanence are proved in detail. The feedback mechanism cannot change the basic reproductive number, but it can reduce the endemic level and weaken the epidemic spreading. Numerical simulations confirmed the analytical results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call