Abstract
An epicardial bioelectronic patch is an important device for investigating and treating heart diseases. The ideal device should possess cardiac-tissue-like mechanical softness and deformability, and be able to perform spatiotemporal mapping of cardiac conduction characteristics and other physical parameters. However, existing patches constructed from rigid materials with structurally engineered mechanical stretchability still have a hard–soft interface with the epicardium, which can strain cardiac tissue and does not allow for deformation with a beating heart. Alternatively, patches made from intrinsically soft materials lack spatiotemporal mapping or sensing capabilities. Here, we report an epicardial bioelectronic patch that is made from materials matching the mechanical softness of heart tissue and can perform spatiotemporal mapping of electrophysiological activity, as well as strain and temperature sensing. Its capabilities are illustrated on a beating porcine heart. We also show that the patch can provide therapeutic capabilities (electrical pacing and thermal ablation), and that a rubbery mechanoelectrical transducer can harvest energy from heart beats, potentially providing a power source for epicardial devices. An epicardial patch made from materials that match the mechanical softness of heart tissue can perform spatiotemporal mapping of electrophysiological activity, as well as strain and temperature sensing, pacing and ablation therapies, and energy harvesting, while deforming with a beating heart.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.