Abstract

Pharmacological activation of protein kinase A (PKA) reduces migration of arterial smooth muscle cells (ASMCs), including those isolated from human arteries (HASMCs). However, when individual migration-associated cellular events, including the polarization of cells in the direction of movement or rearrangements of the actin cytoskeleton, are studied in isolation, these individual events can be either promoted or inhibited in response to PKA activation. While pharmacological inhibition or deficiency of exchange protein activated by cAMP-1 (EPAC1) reduces the overall migration of ASMCs, the impact of EPAC1 inhibition or deficiency, or of its activation, on individual migration-related events has not been investigated. Herein, we report that EPAC1 facilitates the formation of leading-edge protrusions (LEPs) in HASMCs, a critical early event in the cell polarization that underpins their migration. Thus, RNAi-mediated silencing, or the selective pharmacological inhibition, of EPAC1 decreased the formation of LEPs by these cells. Furthermore, we show that the ability of EPAC1 to promote LEP formation by migrating HASMCs is regulated by a phosphodiesterase 1C (PDE1C)-regulated “pool” of intracellular HASMC cAMP but not by those regulated by the more abundant PDE3 or PDE4 activities. Overall, our data are consistent with a role for EPAC1 in regulating the formation of LEPs by polarized HASMCs and show that PDE1C-mediated cAMP hydrolysis controls this localized event.

Highlights

  • Agents that increase cyclic AMP signaling largely inhibit migration of arterial smooth muscle cells (ASMCs), including those ASMCs isolated from human arteries (HASMCs)

  • CAMP-elevating agents have long been seen as attractive agents through which to reduce ASMC migration in several conditions, including in-stent restenosis, where PDE4 inhibition reduces neointima formation and inhibits vascular cell adhesion molecule 1 (VCAM-1) expression and histone methylation in an exchange protein activated by cyclic AMP (cAMP)

  • Using a combination of approaches, we assessed the role of exchange protein activated by cAMP-1 (EPAC1), the sole exchange protein activated by cAMP (EPAC) expressed in Human arterial smooth muscle cells (HASMCs) [18], in coordinating the ability of these cells to generate polarized leading-edge protrusions (LEPs) in response to a chemotactic gradient

Read more

Summary

Introduction

Agents that increase cyclic AMP (cAMP) signaling largely inhibit migration of arterial smooth muscle cells (ASMCs), including those ASMCs isolated from human arteries (HASMCs). Studies have shown that the pan-cellular increases in cAMP caused by agents that activate all transmembrane adenylyl cyclases, including agents such as forskolin, or which inhibit all cellular cAMP-hydrolyzing phosphodiesterases (PDEs), like isobutyl-methyl-xanthine (IBMX), consistently reduce ASMC migration [1]. Cells 2019, 8, 1473 instance, while increased protein kinase A (PKA) activity reduces overall cellular migration, PKA activation promotes, rather than inhibits, the formation of cellular protrusions at the cellular front, a critical early step in polarizing cells for migration [5,6,7,8,9] These dichotomous effects have not been studied systematically, it is likely that they arise due to the complexities involved in coordinating the recognized spatial and temporal selectivity of cellular cAMP signaling. Spatial and temporal compartmentation of cAMP signaling is made possible by the subcellular localization of the enzymes that synthesize cAMP (adenylyl cyclases), the enzymes that hydrolyze and inactivate cAMP (cyclic nucleotide phosphodiesterases; PDEs), and the dominant cAMP effectors (PKA and EPAC) [3,4,10,11,12,13]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call