Abstract

An inventory model is considered in which inventory is depleted not only by demand, but also by deterioration. Hence, in this paper, we derive the EOQ model for inventory of items that deteriorate at a Weibull-distributed rate, assuming the demand rate with a continuous function of time. Moreover, the proposed model cannot be solved directly in a closed form, thus we used the computer software IMSL MATH/LIBRARY (1989) to find the optimal reorder time. Further, we also find that the optimal procedure is independent from the form of the demand rate. Finally, we also assume that the holding cost is a continuous, non-negative and non-decreasing function of time in order to generalize the EOQ model. Moreover, four numerical examples and sensitivity analyses are provided to assess the solution procedure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.