Abstract

An artificial photosynthesis system coupled with an enzyme was constructed using the nanospherical self-assembly of tyrosyl bolaamphiphiles, which worked as a host matrix exhibiting an antenna effect that allowed enhanced energy transfer to the ZnDPEG photosensitizer. The excited electrons from the photosensitizer were transferred to NAD+ to produce NADH, which subsequently initiated the conversion of an aldehyde to ethanol by alcohol dehydrogenase. Production of NADH and ethanol was enhanced by increasing the concentration of tyrosyl bolaamphiphiles. Spectroscopic investigations proved that the photosensitizer closely associated with the surface of the bolaamphiphile assembly through hydrogen bonds that allowed energy transfer between the host matrix and the photosensitizer. This study demonstrates that the self-assembly of bolaamphiphiles could be applicable to the construction of biomimetic energy systems exploiting biochemical activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.