Abstract

The successful synthesis ofLa-doped CoFe LDH@rGO nanocompositeis reported combiningthe advantages of LDH and rGO and shows promising performances in electrochemical sensors. The structure of the obtained nanocomposite was investigated using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction pattern (XRD), and field emission scanning electron microscope images (FE-SEM). Then, it was directly utilized to construct a carbon paste electrode (CPE) for urea detection. The electrochemical performance of the sensor was evaluated by various electrochemical methods. The La-CoFe LDH@rGO electrode exhibited excellent electrocatalytic properties, including a wide linear workingrange of 0.001-23.5 mM, very high sensitivity of 1.07 ± 0.023 µA µM-1 cm-2, a low detection limit of 0.33 ± 0.11 µM, and rapid response time of 5 s towards urea detection at the working potential of 0.4 V. Furthermore, the sensor displayed a high selectivity in different matrices, appropriate reproducibility, and long shelf life without activity loss during 3 months of storage under ambient conditions. Further tests were performed on serum and milk samples to confirm the capability of the proposed sensor for practical applications, demonstrating a reasonable recovery of 94.8 to 102% with an RSD value below 3%. Consequently, the synergistic effect of each component led to the good electrocatalytic activity of the modified electrode towards urea.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call