Abstract

Herein, a signal-on electrochemical aptasensor for highly sensitive detection of thrombin (TB) was constructed based on the DNAzyme-driven DNA walker strategy. We developed a new dual functional hairpin DNA (HP) containing a substrate sequence of the Mg2+-dependent DNAzyme (in the loop region) and the G-quadruplex forming segment (in the stem region). The DNA walker (TBA2-DWs), containing a TB aptamer and an enzymatic sequence, was introduced onto gold electrode (GE) by aptamers-target specific recognition, and thus initiated the enzymatic sequences to hybridize with the substrate sequence. Then, the DNA walker could repeatedly bind and cleave HP in the assistance of Mg2+, unlocking many active G-quadruplex forming sequences. Finally, hemin can further bind the G-quadruplex to form G-quadruplex/hemin complexes and generate enhanced current output. The aptasensor for TB assay showed a linear detection range from 1 pM to 60000 pM with a lower detection limit of 0.58 pM. And more, the proposed detection strategy was enzyme-free and label-free.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.