Abstract
In this vision paper, the authors discuss models and techniques for integrating, processing and querying data, information and knowledge within data warehouses in a user-centric manner. The user-centric emphasis allows us to achieve a number of clear advantages with respect to classical data warehouse architectures, whose most relevant ones are the following: (i) a unified and meaningful representation of multidimensional data and knowledge patterns throughout the data warehouse layers (i.e., loading, storage, metadata, etc); (ii) advanced query mechanisms and guidance that are capable of extracting targeted information and knowledge by means of innovative information retrieval and data mining techniques. Following this main framework, the authors first outline the importance of knowledge representation and management in data warehouses, where knowledge is expressed by existing ontology or patterns discovered from data. Then, the authors propose a user-centric architecture for OLAP query processing, which is the typical applicative interface to data warehouse systems. Finally, the authors propose insights towards cooperative query answering that make use of knowledge management principles and exploit the peculiarities of data warehouses (e.g., multidimensionality, multi-resolution, and so forth).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Data Warehousing and Mining
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.