Abstract

This paper presents an environment-driven tropical cyclone (TC) model for the Western North Pacific basin, which comprises a revised Poisson regression genesis model, a tailored beta-advection track model, and a fast intensity model. The TC model reproduces the temporal and spatial distributions of genesis events, the motion pattern of tracks, as well as the intensity evolutions along tracks. Risk analyses for Hong Kong and along the southeast coastline of mainland China demonstrate that this model can simulate extreme TC events with high fidelity. And the Gaussian mixture model outperforms the Frank Copula in approximating the joint distributions of the annual maximum wind speeds and the corresponding wind directions. This model is driven by a set of environmental variables including relative vorticity, relative humidity, sea surface temperature, vertical wind shear, potential intensity, sub mixed layer depth stratification, mixture layer depth and so on. This enables the model to not only reproduce historical records, but also make predictions for future TC behaviors under climate change with combination of global climate models. Besides, the computational efficiency of the TC model is comparable to traditional purely statistical models. The proposed model can also be coupled with other natural hazard models to conduct multi-hazard analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.