Abstract
Environmental contextPolycyclic aromatic hydrocarbons (PAHs) are widespread organic pollutants that tend to accumulate in soil. We developed an environmentally friendly analytical method for PAHs to evaluate human health risks associated with their presence in soils. The method is feasible for the analysis of soils with widely varying PAH contamination levels, and is well suited to environmental monitoring studies of relevance to human health. AbstractA microwave-assisted extraction, with a dispersive solid-phase purification step followed by programmed temperature vaporisation–gas chromatography–tandem mass spectrometry, is proposed as an environmentally friendly, simple and cheap analytical method for polycyclic aromatic hydrocarbons (PAHs) in soil. Different extraction and clean-up operating variables were tested to achieve satisfactory analytical performances: trueness from 92 to 114%, limit of quantification (LOQ) from 0.4 to 2µgkg−1 for most PAHs and intermediate precision, calculated as relative standard deviation (RSD), below 10%. The method was validated using both Certified Reference Material and real soil samples collected at sites subjected to different human activities. PAH contents ranged from 0.11 (in holm oak forest soil) to 1mgkg−1 d.w. (in an industrial soil) according to the anthropic gradient. The soil PAH contents measured were used to estimate the risk to human health, which suggested the exposure to the PAHs in soil as a potential risk for human health, especially at the industrial site. The feasibility of the method for soils with different PAH contamination degrees makes it relevant in monitoring programs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.