Abstract

AbstractRechargeable batteries have been used to power various electric devices and store energy from renewables, but their toxic components (namely, electrode materials, electrolyte, and separator) generally cause serious environment issues when disused. Such toxicity characteristic makes them difficult to power future wearable electronic devices. Now an environmentally friendly and highly safe rechargeable battery, based on a pyrene‐4,5,9,10‐tetraone (PTO) cathode and zinc anode in mild aqueous electrolyte is presented. The PTO‐cathode shows a high specific capacity (336 mAh g−1) for Zn2+ storage with fast kinetics and high reversibility. Thus, the PTO//Zn full cell exhibits a high energy density (186.7 Wh kg−1), supercapacitor‐like power behavior and long‐term lifespan (over 1000 cycles). Moreover, a belt‐shaped PTO//Zn battery with robust mechanical durability and remarkable flexibility is first fabricated to clarify its potential application in wearable electronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.