Abstract

Magnetic signature of the iron-bearing minerals archived in sediments is sensitive to change in environment and therefore, studied to reconstruct the signals linked with environmental processes. In the present work, we have analyzed 11 sediment cores from Vembanad lagoon, southwest coast of India, to estimate the magnetic fluctuations associated with environmental processes. Down-core variation in magnetic susceptibility and anhysteretic, isothermal and saturation isothermal remnant magnetization and S and H-ratios have been interpreted to map the degree and spatial distribution of anthropogenic pollution in and around the lagoon. Downcore variation of magnetic susceptibility of Vembanad lagoon sediments varies from 10 to 100 × 10−8 m3/ kg. The top layers of sediment samples from river mouth regions (Periyar and Muvattupuzha rivers) show higher susceptibility values and incidentally these samples are of coarse sized. The subtle variations in SIRM/χlf ratios suggest that there are magnetic grain size differences in the samples. The SIRM and χlf relation suggests that dominant magnetic grain size in sediments. The low ARM/χlf ratios suggest a relatively higher ferrimagnetic contribution and coarser magnetite grain size. Rock magnetism data reveal that the coarse magnetic grain size is affecting the pollution of Vembanad lagoon. We also analyzed downcore variability of metal concentrations such as Fe, Mn, Cu, Zn, Ni and Cr, and all these metals exhibit higher concentrations in the top layers of the cores. Our study suggests that higher values of magnetic parameters and metal concentrations are due to various anthropogenic sources.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.