Abstract

Additive manufacturing (AM) offers advantages in many aspects over conventional manufacturing techniques. These include reduced lead times and material waste. A recent topic of interest is the environmental impact of manufacturing techniques. However, there is a lack of literature detailing the impact of titanium manufacturing processes. In addition, there is also a gap in knowledge comparing AM to conventional manufacturing methods with the aim of investigating the reduced environmental impact as a further advantage of AM.In this research, an environmental impact analysis is used to compare wire + arc additive manufacturing (WAAM) against conventional forging in the production of a Ti6Al4V component. This is achieved by comparing the material waste, energy consumption and carbon emissions of each production method. WAAM shows a 50% reduction in carbon emission and 40% reduction in energy consumption over forging. The largest difference is in the material waste, with a 55% reduction in discarded material. The comparison metrics of specific energy consumption (SEC) and specific carbon emissions are presented for evaluating the sustainability of processes, with the WAAM produced component in this study presenting a SEC of 574.9 MJ/kg compared to 958 MJ/kg for conventional forging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.