Abstract
The current environmental flow assessment of Chinese rivers is thought to have three shortcomings: The first is that environmental flow requirements of reservoirs in dammed rivers are usually not explicitly considered; the second is that enough attentions have not been paid to the inherent links between flow regime and ecological processes; the third is that most studies focus on the variable range of merely one hydrological element such as discharge needed by riverine ecosystems. Here, first proposed is a holistic method for environmental flow assessment, the flow-ecological response relationship method that is suitable for large rivers with relatively abundant ecological data. Based on the conceptual models and quantitative relationships between flow and ecological response, this method comprehensively considers the ecological conservation requirements of both reservoir and its downstream reach. Then, it is applied to assessing the environmental flows of the Three Gorges Reservoir and its downstream reach by the following steps: 1) Construction of conceptual models of flow-ecological response; 2) identification of ecological targets of environmental flows and their key periods; 3) development of the quantitative relationships between hydrological indicators and ecological indictors; 4) preliminary assessment of environmental flow according to the tradeoff between ecological targets and water demands of human. The environmental flow hydrographs obtained have explicit ecological conservation targets, time schedule of achieving each target, and characteristics of multiple hydrological elements such as flow, water level, frequency, timing, duration and rate of change. The case study has tested the reasonability and feasibility of this method, and the results of this study are expected to provide technical support and decision reference for improving the operation of the Three Gorges-Gezhouba cascade reservoirs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.