Abstract
In this paper a multilevel programming problem, that is, three level programming problem is considered. It involves three optimization problems where the constraint region of the first level problem is implicitly determined by two other optimization problems. The objective function of the first level is indefinite quadratic, the second one is linear and the third one is linear fractional. The feasible region is a convex polyhedron. Considering the relationship between feasible solutions to the problem and bases of the coefficient sub-matrix associated to the variables of the third level, an enumerative algorithm is proposed, which finds an optimum solution to the given problem. It is illustrated with the help of an example. .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.