Abstract

Genetic and immunological analysis of host-pathogen interactions can reveal fundamental mechanisms of susceptibility and resistance to infection. Modeling human infectious diseases among inbred mouse strains is a proven approach but is limited by naturally occurring genetic diversity. Using ENU mutagenesis, we created a recessive loss-of-function point mutation in Unc93b1 (unc-93 homolog B1 (C. elegans)), a chaperone for endosomal TLR3, TLR7, and TLR9, that we termed Letr for ‘loss of endosomal TLR response’. We used Unc93b1Letr/Letr mice to study the role of Unc93b1 in the immune response to influenza A/PR/8/34 (H1N1), an important global respiratory pathogen. During the early phase of infection, Unc93b1Letr/Letr mice had fewer activated exudate macrophages and decreased expression of CXCL10, IFN-γ, and type I IFN. Mutation of Unc93b1 also led to reduced expression of the CD69 activation marker and a concomitant increase in the CD62L naïve marker on CD4+ and CD8+ T cells in infected lungs. Finally, loss of endosomal TLR signaling resulted in delayed viral clearance that coincided with increased tissue pathology during infection. Taken together, these findings establish a role for Unc93b1 and endosomal TLRs in the activation of both myeloid and lymphoid cells during the innate immune response to influenza.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.