Abstract

Quantum Brownian motion of a harmonic oscillator in the Markovian approximation is described by the respective Caldeira-Leggett master equation. This master equation can be brought into Lindblad form by adding a position diffusion term to it. The coefficient of this term is either customarily taken to be the lower bound dictated by the Dekker inequality or determined by more detailed derivations on the linearly damped quantum harmonic oscillator. In this paper, we explore the theoretical possibilities of determining the position diffusion term's coefficient by analyzing the entropy production of the master equation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.