Abstract

Abstract Entropy dynamics is a Bayesian inference methodology that can be used to quantify time-dependent posterior probability densities that guide the development of complex material models using information theory. Here, we expand its application to non-Gaussian processes to evaluate how fractal structure can influence fractional hyperelasticity and viscoelasticity in elastomers. We investigate how kinematic constraints on fractal polymer network deformation influences the form of hyperelastic constitutive behavior and viscoelasticity in soft materials such as dielectric elastomers, which have applications in the development of adaptive structures. The modeling framework is validated on two dielectric elastomers, VHB 4910 and 4949, over a broad range of stretch rates. It is shown that local fractal time derivatives are equally effective at predicting viscoelasticity in these materials in comparison to nonlocal fractional time derivatives under constant stretch rates. We describe the origin of this accuracy that has implications for simulating large-scale problems such as finite element analysis given the differences in computational efficiency of nonlocal fractional derivatives versus local fractal derivatives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call