Abstract
Detection of aberration in video surveillance is an important task for public safety. This paper puts forward a simple but effective framework to detect aberrations in video streams using Entropy, which is estimated on the statistical treatments of the spatiotemporal information of a set of interest points within a region of interest by measuring their degree of randomness of both directions and displacements. Entropy is a measure of the disorder/randomness in video frame. It has been showed that degree of randomness of the directions (circular variance) changes markedly in abnormal state of affairs and does change only direction variation but does not change with displacement variation of the interest point. Degree of randomness of the displacements has been put in for to counterbalance this deficiency. Simple simulations have been exercised to see the characteristics of these crude elements of entropy. Normalized entropy measure provides the knowledge of the state of anomalousness. Experiments have been conducted on various real world video datasets. Both simulation and experimental results report that entropy measures of the frames over time is an outstanding way to characterize anomalies in videos.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.