Abstract

Hippocampal place cells and entorhinal grid cells have been hypothesized to be able to form map-like spatial representation of the environment, namely cognitive map. In most prior approaches, either neural network methods or only hippocampal models are used for building cognitive maps, lacking biological fidelity to the entorhinal-hippocampal system. This paper presents a novel computational model to build cognitive maps of real environments using both place cells and grid cells. The proposed model includes two major components: (1) A competitive Hebbian learning algorithm is used to select velocity-coupled grid cell population activities, which path-integrate self-motion signals to determine computation of place cell population activities; (2) Visual cues of environments are used to correct the accumulative errors intrinsically associated with the path integration process. Experiments performed on a mobile robot show that cognitive maps of the real environment can be efficiently built. The proposed model would provide an alternative neuro-inspired approach for robotic mapping, navigation and localization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.