Abstract

An enthalpy-source based novel lattice Boltzmann technique is formulated for numerical simulation of conduction-dominated phase change processes of single-component systems. The proposed model is based on a classical lattice Boltzmann scheme for description of internal energy evolution with a fixed-grid enthalpy-based formulation for capturing the phase boundary evolution in an implicit fashion. A single particle density distribution function is used for calculating the thermal variable. The macroscopic energy equation is found to be recovered following the Chapman–Enskog multiscale expansion procedure. It is also found that predictions from the present model agree excellently with results obtained from established analytical/numerical models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.