Abstract
Each Android application requires accumulations of permissions in installation time and they are considered as the features which can be utilized in permission-based identification of Android malwares. Recently, ensemble feature selection techniques have received increasing attention over conventional techniques in different applications. In this work, a cluster based voted ensemble voted feature selection technique combining five base wrapper approaches of R libraries is projected for identifying most prominent set of features in the predictive modeling of Android malwares. The proposed method preserves both the desirable features of an ensemble feature selector, accuracy and diversity. Moreover, in this work, five different data partitioning ratios are considered and the impact of those ratios on predictive model are measured using coefficient of determination (r-square) and root mean square error. The proposed strategy has created significant better outcome in term of the number of selected features and classification accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Information System Modeling and Design
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.