Abstract

We tested the effects of three fast pansharpening methods – Intensity-Hue-Saturation (IHS), Brovey Transform (BT), and Additive Wavelet Transform (AWT) – on sugarcane classification in a Landsat 8 image (bands 1–7), and proposed two ensemble pansharpening approaches (band stacking and band averaging) which combine the pixel-level information of multiple pansharpened images for classification. To test the proposed ensemble pansharpening approaches, we classified “sugarcane” and “other” land cover in the unsharpened Landsat multispectral image, the individual pansharpened images, and the band-stacked and band-averaged ensemble images using Support Vector Machines (SVM), and assessed the classification accuracy of each image. Of the individual pansharpened images, the AWT image achieved higher classification accuracy than the unsharpened image, while the IHS and BT images did not. The band-stacked ensemble images achieved higher classification accuracies than the unsharpened and individual pansharpened images, with the IHS-BT-AWT band-stacked image producing the most accurate classification result, followed by the IHS-BT band-stacked image. The ensemble images containing averaged pixel values from multiple pansharpened images achieved lower classification accuracies than the band-stacked ensemble images, but most still had higher accuracies than the unsharpened and individual pansharpened results. Our results indicate that ensemble pansharpening approaches have the potential to increase classification accuracy, at least for relatively simple classification tasks. Based on the results of the study, we recommend further investigation of ensemble pansharpening for image analysis (e.g. classification and regression tasks) in agricultural and non-agricultural environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call