Abstract
This study presents the applicability of an ensemble of artificial neural networks (ANNs) and learning paradigms for weather forecasting in southern Saskatchewan, Canada. The proposed ensemble method for weather forecasting has advantages over other techniques like linear combination. Generally, the output of an ensemble is a weighted sum, which are weight-fixed, with the weights being determined from the training or validation data. In the proposed approach, weights are determined dynamically from the respective certainties of the network outputs. The more certain a network seems to be of its decision, the higher the weight. The proposed ensemble model performance is contrasted with multi-layered perceptron network (MLPN), Elman recurrent neural network (ERNN), radial basis function network (RBFN), Hopfield model (HFM) predictive models and regression techniques. The data of temperature, wind speed and relative humidity are used to train and test the different models. With each model, 24-h-ahead forecasts are made for the winter, spring, summer and fall seasons. Moreover, the performance and reliability of the seven models are then evaluated by a number of statistical measures. Among the direct approaches employed, empirical results indicate that HFM is relatively less accurate and RBFN is relatively more reliable for the weather forecasting problem. In comparison, the ensemble of neural networks produced the most accurate forecasts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.