Abstract

Advancing cutting-edge techniques to accurately classify electromyography (EMG) signals are of paramount importance given their extensive implications and uses. While recent studies in the literature present promising findings, a significant potential still exists for substantial enhancement. Motivated by this need, our current paper introduces a novel ensemble neural network approach for time series classification, specifically focusing on the classification of upper limb EMG signals. Our proposed technique integrates long short-term memory networks (LSTM) and attention mechanisms, leveraging their capabilities to achieve accurate classification. We provide a thorough explanation of the architecture and methodology, considering the unique characteristics and challenges posed by EMG signals. Furthermore, we outline the preprocessing steps employed to transform raw EMG signals into a suitable format for classification. To evaluate the effectiveness of our proposed technique, we compare its performance with a baseline LSTM classifier. The obtained numerical results demonstrate the superiority of our method. Remarkably, the method we propose attains an average accuracy of 91.5%, with all motion classifications surpassing the 90% threshold.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.