Abstract
ABSTRACTIn Gram-negative bacteria, a wide range of proteins are secreted by highly specialized secretion systems. These secreted proteins play essential roles in the response of bacteria to their environment and also in several physiological processes such as adhesion, pathogenicity, adaptation and survival. Therefore, identifying secreted proteins in Gram-negative bacteria may assist in understanding the secretion mechanism and development of new antimicrobial strategies. Considering that a single-feature model is less likely to comprehensively cover this information, three kinds of feature models were used in this paper to represent protein samples by composition analysis, correlation analysis and smoothing encoding method on position-specific scoring matrix profiles. A support vector machine-based ensemble method with these hybrid features was developed to predict multi-type Gram-negative bacterial secreted proteins. Finally, our method achieves overall accuracies of 97.09% and 96.51% using an independent dataset test and jackknife test on a public test dataset, which are 3.49% and 2.32% higher, respectively, than results obtained by other methods. These results show the effectiveness and stability of the proposed ensemble method. It is anticipated that our method will provide useful information for further research on bacterial secreted proteins and secreted systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.