Abstract
AbstractThe prediction of low visibility is essential for proactive traffic safety management on freeways under fog conditions. However, few studies have developed prediction models for visibility on freeways at a short‐term time interval. This study proposes an ensemble learning approach to develop a short‐term prediction model of low visibility on freeways using meteorological data. Spearman's rank correlation coefficient is used to select meteorological variables related to low visibility. Random forests (RF) and extreme gradient boosting (XGB) are employed to develop visibility prediction models, and back propagation neural network (BPNN) and logistic regression (LR) are used for comparison. The models are evaluated over five prediction time intervals (5, 10, 15, 30, and 60 min). The results indicate that the RF models outperform the other models with precision of 73.9%, recall of 59.8% and F1 score of 0.65. Moreover, the prediction model with a 15‐min time interval shows better performance. With the proposed short‐term prediction of low visibility, it is expected that more crashes could be prevented with more appropriate proactive traffic safety management strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.