Abstract

This paper develops an efficient implementation of the ensemble Kalman filter based on a modified Cholesky decomposition for inverse covariance matrix estimation. This implementation is named EnKF-MC. Background errors corresponding to distant model components with respect to some radius of influence are assumed to be conditionally independent. This allows one to obtain sparse estimators of the inverse background error covariance matrix. The computational effort of the proposed method is discussed and different formulations based on various matrix identities are provided. Furthermore, an asymptotic proof of convergence with regard to the ensemble size is presented. In order to assess the performance and the accuracy of the proposed method, experiments are performed making use of the atmospheric general circulation model SPEEDY. The results are compared against those obtained using the local ensemble transform Kalman filter (LETKF). Tests are performed for dense observations (100% and 50% of the model comp...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.