Abstract

Accurate wind speed prediction is significantly important for the full utilization of wind energy resources and the improvement in the economic benefits of wind farms. Because the ensemble forecast takes into account the uncertainty of information about the atmospheric motion, domestic and foreign weather service forecast centers often choose to use the ensemble numerical forecast to achieve the fine forecast of wind speed. However, due to the unavoidable systematic errors of the ensemble numerical forecast model, it is necessary to correct the deviation in the ensemble numerical forecast wind speed. Considering the typical spatio-temporal characteristics of the grid prediction data of the wind field, based on Convolutional Long–Short Term Memory (ConvLSTM) units and attention mechanism, this paper takes the complex and representative North China region as the research area, aiming to reveal the shortcomings of existing deep learning integrated prediction correction models in extracting temporal features of grid prediction data. We propose a new ensemble prediction wind field correction model integrating multi-factor and spatio-temporal characteristics. This model uses reanalyzed land data provided by the European Center for Medium-Range Weather Forecasts as the real data to correct the deviation in the near-surface 10 m wind field data predicted by the regional ensemble numerical prediction model of the China Meteorological Administration. We used the reanalyzed land data provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) as the live data to correct the deviation in the near-surface 10 m wind field data predicted by the regional ensemble numerical forecast model of the China Meteorological Administration (CMA). At the same time, Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) were used as the scoring indicators, and the results of the China Meteorological Administration–Regional Ensemble Prediction System (CMA–REPS) ensemble average, multiple linear regression method correction, Long–Short Term Memory (LSTM) method correction, and U-net (UNET) method correction were compared. Compared with the UNET model method, the experimental results show that when processing the 10 m zonal wind data, 10 m meridional wind data, and 10 m average wind speed data of CMA–REPS 24 h forecasts, the correction results of our model can reduce the RMSE score index by 9.15%, 4.83%, and 7.79%. At the same time, when processing the 48 h and 72 h near-surface 10 m wind field data of the CMA–REPS forecast, our model can improve the prediction accuracy of CMA–REPS near-surface wind forecast data. Therefore, the correction effect of the proposed model in a complex terrain area is evidently better compared to other methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call