Abstract

Hydrologic prediction errors arise from uncertainty in initial moisture states (mainly snowpack and soil moisture), in boundary forcings (primarily future precipitation and temperature), and from model structure and parameter uncertainty. We evaluate the relative importance of initial condition and boundary forcing uncertainties using a hindcast‐based framework that contrasts Ensemble Streamflow Prediction (ESP) with an approach that we term “reverse‐ESP”. In ESP, a hydrologic model with assumed perfect initial conditions (ICs) is forced by a forecast ensemble resampled from observed meteorological sequences; whereas reverse‐ESP combines an ensemble of resampled ICs with a perfect meteorological forecast. The framework shows that in northern California, US, ICs yield streamflow prediction skill for up to 5 months during the transition between the wet and dry seasons, whereas during the reverse transition, climate forecast information is critical. In southern Colorado, IC knowledge outweighs climate prediction skill for shorter periods due to a more uniform precipitation regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.