Abstract

The standard finite element models, i.e. the finite element methods that use the classical continuum models, suffer from the excessive mesh dependence when a strain-softening model is used. It cannot converge to a meaningful solution and the governing differential equation loses the ellipticity. This paper presents an enriched finite element algorithm for simulation of localization phenomenon using a higher order continuum model based on the Cosserat continuum theory. The governing equations are regularized by adding the rotational degrees-of-freedom to the conventional degrees-of-freedom and including the internal length parameter in the model. The extended finite element method (X-FEM) is employed, in which the discontinuity interfaces are represented independent of element boundaries and the process is accomplished by partitioning the domain with some triangular sub-elements whose Gauss points are used for integration of the domain of elements. Finally, several numerical examples are analyzed to demonstrate the efficiency of the mixed XFEM – Cosserat continuum model in shear band localization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call