Abstract

Lavas from Karisimbi, the largest volcano in the Virunga province in the Western Branch of the African rift on the Zaire-Rwandan border, constitute a suite of mafic potassic basanites and more evolved potassic derivatives. All of the lavas are potassic with K2O/Na2O≥1, and enriched in incompatible elements, with chondrite normalised (La/Yb)n>18 and Nb/Zr>0.25. The 87Sr/86Sr and 143Nd/144Nd ratios reflect these enriched compositions, varying from 0.7052 and 0.51258 respectively in the K-basanites to 0.7132 and 0.51226 in the most evolved K-trachyte, although at MgO abundances >4% there is no systematic variation of isotope ratios with fractionation. At >4% MgO, lava compositions were controlled by assimilation and fractional crystallization in a sub-volcanic magma chamber. Trace-element and isotope variations in the more mafic lavas appear to reflect mixing between a “primitive” K-basanite (PKB) magma and a Sr-rich end-member, similar to melilite nephelinites from the neighbouring volcano, Nyiragongo. Both endmembers are mantle-derived and isotopically distinct, with the PKB being characterised by 87Sr/86Sr up to 0.707 and 143Nd/144Nd as low as 0.51236. Alternatively, isotope variations may be the time-integrated response to trace-element fractionations in a variably enriched mantle source. The Pb isotope variations within Karisimbi are complex. In the more evolved lavas all three ratios increase coherently with fractionation, whereas in the mafic varieties 206Pb/204Pb remains roughly constant at ∼19.2 while 207Pb/204Pb and 208Pb/204Pb vary from 15.67 to 15.78 and 39.49 to 40.80 respectively, defining sub-vertical trends, consistent with PKB-nephelinite magma mixing. The Nd and Sr isotopes indicate trace-element fractionation in the PKB source at ∼1 Ga, similar to ages derived from the overlying crust and suggesting a lithospheric origin. Elevated 208Pb/204Pb and 208Pb*/206Pb* values of the PKB are also consistent with Th/U fractionation at a similar time. However, this 1Ga age contrasts with that derived from the elevated 207Pb/204Pb ratios which indicate U/Pb fractionation during the Archaean. Crustal contamination can be excluded as the major control of Pb isotope variation in the PKB because their high Ce/Pb ratios (∼27) are similar to those typical of oceanic basalts. Parent/daughter trace-element fractionation and the high Ti, Nb and Ta abundances of the PKB lavas are all consistent with enrichment of a lithospheric source region by small-degree silicate melts at ∼1Ga. Comparison between measured and time-integrated trace-element ratios suggests that the degree of melting associated with recent magmatism was ≥5%. These data show that significant Th/U and Rb/Sr fractionation can be produced by intra-mantle melting processes and that high 208Pb/204Pb and 208Pb*/206Pb* values can evolve within the upper mantle and do not necessarily require the recycling of crustal material. Comparable isotope features in continental flood basalts and DUPAL ocean island basalts may be explained in a similar way.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.