Abstract
Physical explosion causes large damages in the process industry and quite often escalates to chemical explosions. The shock waves generated by such events are challenging to model and they must be numerically captured without spurious oscillations in order to make an accurate estimative of the accidental effects. In this context, this paper investigates how a new high order numerical scheme models the physical explosion. We have considered a confined explosion in a spherical vessel and blast load throughout pipelines as the framework to investigate the performance of the numerical scheme. The developed numerical approach considers the effect of less smooth substencils when there is a discontinuity inside the stencil based on the local Mach number what avoids oscillations and instability. The numerical solution of the fundamental equations is coupled with the Modified Colebrook-White formulation in order to consider the blast load through the pipeline. Shock waves from experimental data and analytical model are used to validate the proposed model. The research provides an efficient method for prediction of blast loads from spherical vessels rupture to an open atmosphere and in pipelines.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.