Abstract

ABSTRACT Scheduling is one critical issue both in the field of industry engineering and combinatorial optimization research. In order to solve multi-objective scheduling problem with uncertainty, this paper presents a method of enhanced hybrid Estimation of Distribution Algorithm (EDA) with Teaching and Learning-Based Optimization Algorithm (TLBO). First, in order to concentrate their respective advantages, two algorithms of EDA and TLBO are integrated to enhance the capability of both global and local search. Second, scenario-based simulation is adopted to deal with uncertainty, and an adaptive sampling strategy is involved to dynamically adjust the number of scenarios during the evolving process. Third, a problem-specific local search is designed to further improve the optimality of candidate solutions. By comparing with existing algorithms on the benchmark problems of flexible job shop scheduling problem (FJSP), it is to demonstrate that our proposal can obtain better solutions in the aspects of optimality and computational efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.