Abstract
Credit default has always been one of the critical factors in the development of personal credit business. By establishing a default identification model, default can be avoided effectively. There are some existing methods to identify credit default. However, these methods have some problems: Problem (1): It is different to deal the non-linear data, Problem (2): The local stagnation results in the high error rate, and Problem (3): The premature convergence leads to the low classification rate. In this paper, the sinhTSA-MLP default risk identification model is proposed to solve these problems. In this model, the proposed sinhTSA method can effectively avoid the problems of falling into local optimum and premature convergence. And the benchmark test results demonstrate sinhTSA is superior to other methods. According to the two experiments, the classification rate reaches 77.35% and 96.48%. Therefore, the sinhTSA-MLP default identification model has some particular advantages in identifying credit problems The feasibility of the sinhTSA-MLP default identification model has been proved through helping to manage credit default more consciously.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.