Abstract

The compound cis-1,2-dihydrocatechol (DHC) is highly valuable since it finds wide application in the production of fine chemicals and bioactive compounds with medical relevance. The biotechnological process to generate DHC involves a dearomatizing dihydroxylation reaction catalyzed by toluene dioxygenase (TDO) from P. putida F1, employing benzene as substrate. We aimed to enhance the biotechnological E. coli BW25113 platform for DHC production by identifying the key operational parameters positively influencing the final isolated yield. Thereby, we observed an unreported downstream reaction, generating catechol from DHC, affecting, in a negative manner, the final titer for the product. Expression temperature for the TDO-system showed to have the highest influence in terms of final isolated yield. A KEIO-collection-based screening approach highlighted glycerol dehydrogenase (GldA) as the main responsible enzyme for the undesired reaction. We transferred the TDO-system to E. coli BW25113 ΔgldA and applied the enhanced operational set-up on it. This enhanced platform enabled the production of 1.41 g L−1 DHC in isolated yield, which represents a two-fold increase compared with the starting working conditions. To our knowledge, this is the highest DHC production accomplished in recombinant E. coli at semi-preparative scale, providing a robust and accessible biotechnological platform for DHC synthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.