Abstract

In this work, a controlled thermo-compression (TC) bonding process has been developed to address problems caused by interposer and laminate warpage when assembling large three-dimensional (3D) integrated circuit (IC) die on an organic substrate (laminate). By using TC bonding, a thin interposer with through-silicon-vias (TSV) is joined to a top die while being held flat by vacuum and vertical pressure. A vacuum distribution plate is developed and used to mitigate warpage during 3D assembly. A unique set of process parameters has been developed which enables the joining of severely bowed, large area interposers to a semiconductor die without C4 (Controlled Collapse Chip Connection) shorting. The controlled TC bonding method developed in this work offers a huge advantage when joining multiple large warped die in a stack. This evaluation used a large 22 nm CMOS top die with ultra low-K (ULK) back end of the line (BEOL) and copper pillar/SnAg solder bumps at two different pitch sizes, 61 µm and 131 µm. Both the top die and interposer die were larger than 600 mm2 while the organic substrate was 68.5 mm × 68.5 mm. The top die and interposer were bonded with parameters developed for an enhanced TC bonding process. Cross-sectional analysis of the 3D assembly showed that the solder joints along the perimeter of chips exhibited good joining with good solder wettability and no solder bridging. Non-destructive X-ray analysis also confirmed that there were no C4 bump bridging across the entire chip area. The experimental results verified that the enhanced TC bonding process can effectively prevent C4 bump bridging and C4 bump electrical opens for a large die packaged in a 3D configuration with a highly warped large area silicon interposer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.