Abstract

This paper addresses a sequence- and machine-dependent batch scheduling problem on a set of unrelated-parallel machines where the objective is to minimize a linear combination of total weighted completion time and total weighted tardiness. In particular, batch scheduling disregards the group technology assumptions by allowing for the possibility of splitting pre-determined groups of jobs into batches with respect to desired lower bounds on batch sizes. With regard to bounds on batch sizes, the MILP model is developed as two integrated batching and scheduling phases to present the problem. A benchmark of small-size instances on group scheduling shows the superior performance of batch scheduling up to 37% reduction in the objective function value. An efficient meta-heuristic algorithm based on tabu search with multi-level diversification and multi-tabu structure is developed at three levels, which moves back and forth between batching and scheduling phases. To eliminate searching in ineffective neighborhoods and thus enhance computational efficiency of search algorithms, several lemmas are proposed and proven. The results of applying lemmas reflect up to 40% reduction in computational times. Comparing the optimal solutions found by CPLEX and tabu search shows that the tabu search algorithm could find solutions, at least as good as CPLEX but in incredibly shorter computational time. In order to trigger the search algorithm, two different initial solution finding mechanisms have been developed and implemented. Also, due to lack of a qualified benchmark for unrelated-parallel machines, a comprehensive data generation mechanism has been developed in a way that it fairly reflects the real world situations encountered in practice. The machine availability times and job release times are considered to be dynamic and the run time of each job differs on different machines based upon the capability of the machines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call