Abstract

This paper investigates the direction of arrival (DOA) estimation of coherent signals with a moving coprime array (MCA). Spatial smoothing techniques are often used to deal with the covariance matrix of coherent signals, but they cannot be used in sparse arrays. Therefore, super-resolution algorithms such as multiple signal classification (MUSIC) cannot be applied in the DOA estimation of coherent signals in sparse arrays. In this study, we propose an enhanced spatial smoothing method specifically designed for MCA. Firstly, we combine the signals received by the MCA at different times, which can be regarded as a sparse array with a larger number of array sensors. Secondly, we describe how to compute the covariance matrix, derive the signal subspace by eigenvalue decomposition, and prove that the signal subspace is also equivalent to a received signal. Thirdly, we apply enhanced spatial smoothing to the signal subspace and construct a rank recovered covariance matrix. Finally, the DOA of coherent signals are well estimated by the MUSIC algorithm. The simulation results validate the improved performance of the proposed algorithm compared with traditional methods, particularly in scenarios with low signal-to-noise ratios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.