Abstract

Incorporation of initial soil moisture (V 0) in the Soil Conservation Service Curve Number (SCS-CN) methodology helps to avoid the sudden jumps in Curve Number (CN) and, in turn, in computed runoff. It invoked the development of an enhanced (yet simple) Soil Moisture Accounting (SMA) procedure-based-SCS-CN inspired model, by incorporating initial moisture (V 0). Its performance is tested using a dataset of 152 small to large watersheds of USDA (total 38,169 storm events), and compared with original SCS-CN method, Mishra and Singh (Acta Geophys Polon 50(3):457–477, 2002), Michel et al. (Water Resour Res 41(2):W02011, 2005) and Singh et al. (Water Resour Manag 29(11): 4111–4127, 2015) model using four statistical indices (RMSE, R 2, PBIAS and NSE) and rank grading system (RGS). The proposed model scores highest (= 691 marks out of maximum 2280 marks) (Rank I) followed by Singh et al. (Water Resour Manag 29(11):4111–4127, 2015) model with 642 marks (Rank II), Michel et al. (Water Resour Res 41(2):W02011, 2005) model with 376 marks (Rank III) and Mishra and Singh model with 362 marks (= Rank IV). The original SCS-CN model, however, performs the poorest of all with 209 marks (Rank V).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.