Abstract

In the fabrication of some high-voltage low-power applications, low cost is much concerned, and thus using silicon carbide (SiC) MOSFET stack consisting of series connected low-voltage devices is preferred rather than using an expensive single high-voltage device. Therefore, a cost-efficient single gate driven voltage-balanced SiC MOSFET stack topology is proposed in this paper, where only some passive components are equipped with the stack. With a concept of single gate driver, the gate driver design of an SiC MOSFET stack is simplified. With an automatic balancing circuit which operates well with the sequential lagging single gate driver, good voltage balancing of SiC MOSFETs in the stack is realized without causing much extra loss and no additional active control is required. The working principle is illustrated in detail and the parameter selection together with design consideration is presented. Next, this topology is compared with RCD snubber method and active delay adjusting method to better illustrate its advantages. Finally, in a typical high-voltage low-power application, auxiliary power supply, the simulation and experimental results further verify the effectiveness of the proposed topology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.