Abstract

An enhanced role for the energy storage system (ESS), strategically placed at the point of common coupling (PCC) of the microgrid with the utility grid, is proposed. During island operation, the ESS ensures that the frequency and magnitude of the voltage will remain within the limits specified by the Standard EN 50160. By implementing an adjustable droop control method, the distributed energy resources (DERs) adjust their active and reactive powers in order to fulfil the load demand. When the grid is recovered, the ESS detects its presence and achieves a seamless synchronisation of the microgrid with the main grid, without any kind of communication. In grid-connected mode, the DERs deliver their available active power, whereas their reactive power is determined by a zero-sequence voltage. This voltage is injected by the ESS and aims to the zeroing of the amount of reactive power at the PCC. In this way, a reduction of power losses in the distribution lines of the microgrid is achieved. The effectiveness of the proposed control method in all operation modes, without any physical communication means, is demonstrated through detailed simulation in a representative microgrid with DERs fed by photovoltaics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.