Abstract

An alternative synthetic approach was attempted for the fabrication of the Bi–Ca–Sr–Cu oxide superconductor. In this approach a mixed Sr–Ca–Cu oxide powder was first formed, and the resulting powder was subsequently reacted with Bi2O3. With this reaction scheme, problems associated with the low reactivity of CuO and SrCO3 can be partially removed by converting the mixed oxide/carbonate precursors to the reactive Sr–Ca–Cu compound. An enhanced rate of formation of the high-Tc (110 K) phase was observed in the two-step reaction, and this was explained in terms of the low activation free energy path for the formation of the high-Tc phase, which increased the decomposition rate of the remnant CuO. Under the condition of rapid heating, the formation of the high-Tc phase in the one-step reaction was expedited by the Cu-rich liquid phase. However, the liquid phase caused the formation of an insulating layer between the superconducting grains in spite of its catalytic activity in the high-Tc phase formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.