Abstract

SummaryPermanent magnet synchronous motors (PMSM) are widely employed in the application of electric vehicles (EVs) due to their simplicity of operation. Model predictive current control (MPCC) is an advanced technique used to control the PMSM owing advantages like multi‐variable cost function and good dynamic performance. Cost function of predictive current control (PCC) does not require the flux weighting factor; hence, it is simple in the selection of suitable voltage vector (VV). The conventional PCC (C‐PCC) applied to interior PMSM (IPMSM) contains more torque and flux ripples as it includes only one set of voltage vectors for all speed ranges. In proposed PCC (P‐PCC), the magnitude and location of voltage vectors is to be selected as large and small VVs to reduce torque ripples. The P‐PCC in this article utilizes two set of extended voltage vectors (large and small VVs) based on the applied speed change in dynamic conditions and hence reduces the ripple content. Incorporating maximum torque per ampere (MTPA) control in this article serves the purpose of optimizing the machine performance. By adding MTPA to the proposed method, it is aimed to enhance the machine performance with less ripples and improved torque response. Simulation results are presented for conventional and P‐PCC to highlight the effectiveness and efficacy of the P‐PCC. The P‐PCC is experimentally verified with 3.7 kW PMSM using d‐SPACE controller.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call