Abstract
The real-time on-board component-level model (CLM) of gas turbine engines (GTEs) is an important foundation for fault-tolerant control and health management. However, traditional iterative solving algorithms typically rely on the multiple computations of gas-path thermodynamic parameters, which seriously limits their practical application. In this paper, aiming to improve the real-time performance of CLM, an enhanced non-iterative real-time solver (ENRS) method is proposed. It has combined an input selection strategy, an under-sampling supplemental enhancement training (USET) technique, and a multilayer perceptron (MLP) network. Compared with the existing CLM solving methods, its innovations are as follows: (1) a novel framework for directly solving CLM is proposed, which helps get rid of the dilemma of increased time consumption due to multiple iterations. (2) an enhanced training process is designed for the MLP network, which helps improve the adaptivity to the full flight envelope and all engine states, especially to reduce the maximum error. Simulation tests eventually show that the ENRS effectively improves the real-time performance of CLM in practical applications, and maintains solution accuracy and robustness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.